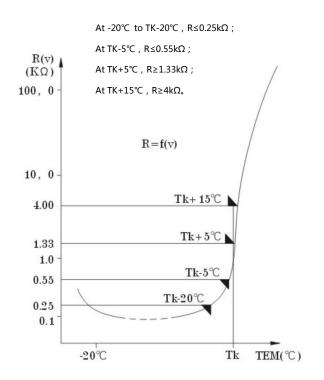
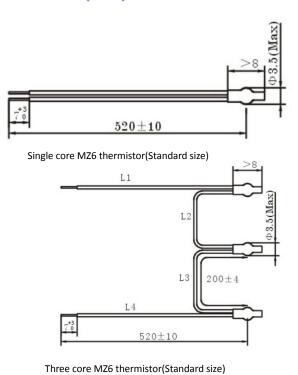
MZ6 Type PTC Thermistors For Electric Motor Protectio

I Overview

MZ6 Type PTC Thermistors is designed for electric motor Protection. The key technology was introduced from the United States of America in 1990s. Already has had more than 10 years production experience. It is availlable for different products and also over temperature protection on the main parts inside the electric motor. For example, the PTC thermistors are embedded into the three-phase Electric motor stator winding. When the temperature of Stator winding of electric motor up to the insulation grade temperature of insulated material the resistance of PTC Thermistors wil rise at the same time. And the signal is transmitted to the protector to switch off the current of electric motor and finally prevent the electric motor form being burned out. This way is widely used in the world




II Features

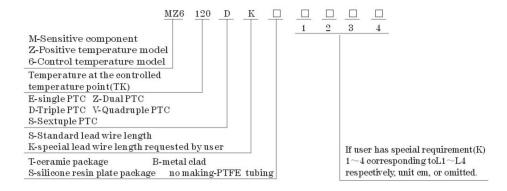
Mz6 type ptc thermistors For Electric Motor Protection accords with the international standard of DN440S1/DIN44S0S> The dimension of the chip is small (size: 1.SX0 6mm). response is Mz6 type quick, the kind of products is complete. The performance of PTC Thermistors is stable, and reliable for a long time use Especially when lacks of phases it can rapidly respond to protect the electric motor as well.

III Single core R-T curve

IV Dimension (mm)

V Technical Specifications

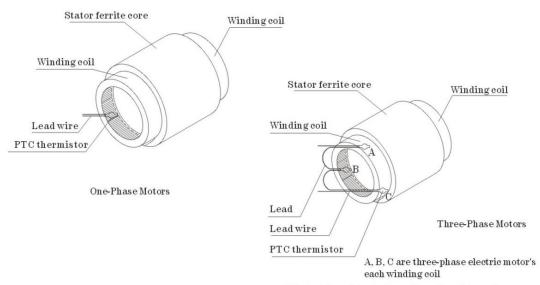
Technical Spe	cifications	Single PTC	Triple PTC	Units					
Max working voltage	Umax	30	30	V					
Normal using voltage	V	≤2.5	≤2.5	V					
Rated action temperature	Tk	60~180	60~180	$^{\circ}$					
Tk tolerance		±5	±5	℃					
Tk repeatability	ΔT	±0.5	±0.5	$^{\circ}$ C					
Resistance in norm al temperature T=25 \pm 1 $^{\circ}$ C (V \leq 2.5V)	R25	≤100	≤300	Ω					
PTC resistance at some temperature(V ≤ 2.5V)	тк-5℃	≤550	≤1650	Ω					
PTC resistance at some temperature(V ≤ 2.5V)	Tk+5℃	≥1330	≥3990	Ω					
PTC resistance at some temperature(V ≤ 2.5V)	Tk+15℃	≥4	≥12	ΚΩ					
-20℃~Tk-20℃		≤250	≤750	Ω					
Tk reaction time	Td	<5	<5	S					
Insulation strength	V	2.5	2.5	KV					
Maximum storage temperature	T1max	125	125	$^{\circ}$ C					
Minimum storage temperature	T1min	-25	-25	$^{\circ}$					
Lead wire color	See the colorful coding below								
Weight	Wt	2	3.5	g					


VI Color Coding(For different temperature ratings)

Reaction Temp (Tk)	30	40	50	60	70	80	90	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	180
1st wire color	Brown	brown	brown	white	white	white	green	red	blue	brown	blue	gray	red	blue	red	white	white	black	blue	blue	blue	white	white
Last wire color	Black	red	gray	gray	brown	white	green	red	gray	brown	green	gray	green	blue	black	blue	black	black	black	red	brown	green	red

Yellow wires are used between adjoining thermistors.

VII Part Numbering


VIII Operating Instruction

The electric motor of different insulation rank selects the different Tk temperature thermistor, its parameter is shown at following table(only reference).

Electric motor insulation rank	Limited Working Temperature	Thermistor(TK)
Υ	90	80~85℃
Α	105	95~100℃
Е	120	110~115℃
В	130	120~125℃
F	155	145~150℃
Н	180	170~175℃
С	Above 180	Above 180

VIIII Note for mounting

1. Insert wire in the winding wire slot of the motor,make it tidy, and then mount the PTC thermistor in the coil of motor(as shown in figure). 2. White mounting, do not hard beat or press the sensing area of the thermistor for fear that the internal precise structure of the product might be damaged. 3. While mounting, do not extremely hard pull the outgoing line of the product for fear that the outgoing line might be pulled apart. 4. Before connecting, read the technical information about PTC temperature control module (the former GRB motor overheat protector) for fear that the thermistor might be damaged. 5. Securely connect the outgoing line in the specified connection position.

* Embed thermistor in the coil, see the picture above. Soak it together with the coil, then dry them completely.

X Error and Measure

Breakdown	Reason	Measure
Resistance value is too	1. The lead of the thermistor	1.Check the lead of the
high(measure resistance of	opened a way or was in a bad	thermistor whether open or
the outgoing line by Ohm	contact.	not,or in the bad contact
band of an AVO meter,the	2. The thermistor was	2.Replace the themistor
resistance value of a single	damaged.	
line is higher than 100Ω at		
25℃)		
Resistance value is too	1.The lead of thermistor was	Check the lead of the
high(measure resistance of	in short circuit; 2.The	thermistor is in short circuit or
the outgoing line by Ohm	thermistor was damaged	not,and connect it. 2,Replace
band of an AVO meter,the		the thermistor
resistance value of a single		
line is higher than 20Ω at		
25℃)		
Sometimes be	1.The lead of thermistor was	Connect the lead of the
Normal,Sometimes be	in in bad contact; 2.The	thermistor and the binding
abormal,	thermistor was damaged	post tightly.
		2.Replace the thermistor